

Terra Harvest Open Architecture Standard for Unattended

Systems

by Robert Winkler, Larry Tokarcik, and Timothy Gregory

ARL-TR-6674 September 2013

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6674 September 2013

Terra Harvest Open Architecture Standard for Unattended

Systems

Robert Winkler, Larry Tokarcik, and Timothy Gregory
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2013

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Terra Harvest Open Architecture Standard for Unattended Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Robert Winkler, Larry Tokarcik, and Timothy Gregory

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CII-B

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6674

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Realizing adaptive and efficient use of unattended assets within a dynamic, low-bandwidth, intermittently connected network

typical of a tactical environment is a challenging problem. Assets are any sensors or platforms that can be tasked and/or

reconfigured to produce a data payload, which is then disseminated over a communications channel. Discovery of assets,

moving payloads from assets through gateways, and archiving, processing, and harvesting payloads for remote analysis are

key capabilities of a foundation for an adaptive architecture. Such an architecture enables setting in motion payloads that can

be used both locally and globally when they come to rest within a domain-specific data store. This report describes the Terra

Harvest high-level architecture components for acquiring, persisting, processing, and disseminating information from

unattended assets to produce mission-specific behaviors and information.

15. SUBJECT TERMS

Unattended ground sensors, UGS, asset discovery, OSGi, Terra Harvest

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
 OF

 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Timothy Gregory
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-5604

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Terra Harvest Controller Configurations 1

2.1 Local Wired Asset with Local Wireless Exfiltration Configuration2

2.2 Remote Wireless Asset with Local Wired Asset and Wireless Exfiltration

Configuration ...3

2.3 Remote Wireless Asset with Local Wired Asset and Wireless Exfiltration

Configuration ...3

2.4 Local Gateway Configuration ...4

2.5 Harvester Configuration ..5

2.6 Domain Gateway Configuration ...5

3. Terra Harvest Software Components and Capabilities 6

3.1 Communications Services ...7

3.2 Asset Plug-ins ..8

3.3 Persistent Store ..9

3.4 Dissemination ..9

3.5 Processing ..10

3.6 Mission Programming ...10

4. Conclusion 11

5. References 12

List of Symbols, Abbreviations, and Acronyms 13

Distribution List 14

iv

List of Figures

Figure 1. Abstract THC configuration. ..2

Figure 2. Local wired asset with local wireless exfiltration. ...3

Figure 3. Remote wireless asset with local wireless exfiltration. ..3

Figure 4. Remote wireless asset with local wired asset and wireless exfiltration.4

Figure 5. Local gateway. ..5

Figure 6. Domain gateway. ..6

Figure 7. Terra Harvest components. ...7

Figure 8. Communication service plug-ins. ...8

1

1. Introduction

The Terra Harvest Open Architecture Standard for Unattended Systems is a Defense Intelligence

Agency (DIA) sponsored specification for a software framework facilitating asset interaction in a

plug-and-play manner. A fundamental objective of the Terra Harvest project is to provide a

software architecture specification that will provide this flexibility while still effectively

operating within a size, weight, and power (SWaP) constrained environment. An initial Terra

Harvest reference implementation called Terra Harvest Open Source Environment (THOSE)

based on these functional requirements built on the Java programming language and the Open

Service Gateway Initiative (OSGi) framework has been developed and tested at Trident Spectre

2012 and 2013. OSGi was chosen for the reference implementation because of its ability to run

on Linux or Windows, its acceptance in the industrial and commercial communities (mobile

phones, automobiles, industrial automation, building automation, entertainment, and fleet

management), and its small footprint, which specifically addresses the Terra Harvest SWaP

objective.

Even through the Terra Harvest reference implementation is focused on an embedded

environment, it will scale from the embedded world up to the laptop, workstation, and server

level platforms where SWaP is not an issue. It should be noted that Terra Harvest is specifically

designed for rapid integration of different assets and is not intended as a framework for a system

of systems where other commonly accepted industry practices and approaches are more

appropriate.

2. Terra Harvest Controller Configurations

Terra Harvest provides the functional requirements foundation for configuring an unattended

system that when connected to assets (sensors, communication devices, processing elements,

etc.) can provide a specific mission capability. A Terra Harvest Controller (THC) is the hardware

platform that hosts a Terra Harvest software implementation, along with asset-specific plug-ins

and services. The use of the Java programming language and OSGi for the implementation of

Terra Harvest allows a controller to be realized on many different computing platforms, from a

militarized embedded processor packaged within an enclosure that will survive harsh

environments to commercial laptops, workstations, or servers that serve as gateways to higher-

echelon processing, dissemination, and exploitation (PED) applications. From an abstract

perspective a THC is a host processing platform running a Terra Harvest implementation that

when configured with the appropriate hardware and software components provides a capability

2

for a specific mission. In its simplest form a THC connects one or more sensor and

communication assets (figure 1). More concrete configurations are described below.

Figure 1. Abstract THC configuration.

2.1 Local Wired Asset with Local Wireless Exfiltration Configuration

In this configuration, the controller performs limited mission-specific processing onboard and

functions primarily as a communications relay, which acquires data from a local sensor and then

disseminates the data over a local wireless link to another local node that is designated as the

central gateway controller. The gateway controller is then responsible for performing further

domain-specific refinement and processing before exfiltrating the data to a domain-specific

gateway node via a reach-back link (figure 2).

3

Figure 2. Local wired asset with local wireless exfiltration.

2.2 Remote Wireless Asset with Local Wired Asset and Wireless Exfiltration

Configuration

In this configuration, one or more remote sensors, possibly of different modalities, are connected

to the controller via a wireless link. Adding more than one sensor modality may also require

additional onboard payload refinement/processing (i.e., adding time, tag, and location) before the

payload can be exfiltrated (figure 3).

Figure 3. Remote wireless asset with local wireless exfiltration.

2.3 Remote Wireless Asset with Local Wired Asset and Wireless Exfiltration

Configuration

As controller and asset deployments get more complex, the onboard payload processing will

continue to grow. Onboard mission-specific processing will be added to a controller, which

further defines the controller’s mission behavior. A simple mission behavior may be required

that only tags and sends payloads from a specific asset if a specific detection occurs with a

certain time frame and ignores all others. Another mission may require onboard specific

processing for profiles where one or more sensors are positioned some distance from the

controller and the detections from the remote sensors (i.e., seismic sensors) will, in turn, drive

4

the actions of a locally wired sensor (e.g., an imager). The onboard controller mission profile

processing must be able to correlate and synchronize the local events in order to produce a

payload at a higher operational context level (i.e., object is moving north to south), which can

also be exfiltrated along with the raw sensings (figure 4).

Figure 4. Remote wireless asset with local wired asset and wireless exfiltration.

2.4 Local Gateway Configuration

In this configuration, multiple controller nodes operating within a local area exfiltrate their

payloads to a controller designated as the local gateway controller. The local gateway controller

is configured like any other local controller. It can have sensors connected to it through wired

and/or wireless communication links in the similar manner as any other local controller. The

local gateway controller is configured with a local wireless link that is used to ingest data from

all the other local controllers. Its distinguishing characteristic is the addition of a long-haul

wireless communication link used for exfiltrating the collective data of the sensor field to higher

echelons. If the long-haul reach-back communications link is bidirectional, the local gateway

controller also serves as the path for remote mission programming and asset fine-tuning

(figure 5).

5

Figure 5. Local gateway.

2.5 Harvester Configuration

Gateway controllers that are positioned where reach back to higher echelons is not possible due

to communication restrictions require the gateway controller to be configured as a store-and-

forward system, which holds the data until another controller configured specifically as a

communications relay comes into range to harvest the data.

2.6 Domain Gateway Configuration

In this configuration, the controller is typically located at a higher echelon (e.g., Tactical

Operations Center or Forward Operating Base) with more infrastructure (shore power, high

bandwidth wired communications links, etc.). These controllers are typically deployed on laptops

or desktop workstations and serve as the bridge between the remote sensor fields and higher

echelon PED applications (figure 6).

6

Figure 6. Domain gateway.

3. Terra Harvest Software Components and Capabilities

The major software components within the Terra Harvest software framework are shown in

figure 7. Components are configured and deployed based on the current mission requirements. In

the Terra Harvest, reference implementation software components are implemented as plug-ins

and services that are discovered, loaded, and activated under the OSGi framework. As described

above in the controller configurations section, the baseline function of a controller is to acquire

data from an asset and then disseminate the payload to other controllers or another domain-

specific software component. The acquisition and dissemination of data are accomplished using

industry-standard (wired or wireless devices) or vendor-provided, asset-specific devices

(MicroHard, Security Equipment Integration Working Group [SEIWG], Common Sensor Radio

(1), Iridium, Broadband Global Area Network [BGAN], etc.) registered as communication

services. An asset (sensor, communication, or platform device) interfaces with the Terra Harvest

software infrastructure through an asset plug-in. The main role of the asset plug-in is to acquire

data or send commands to an asset using the communication service assigned by the mission

program. After acquiring the data from the asset, the asset’s plug-in is responsible for

transforming the raw data into a payload format that conforms to a industry/Government-defined

standard lexicon specified as an extensible markup language (XML) schema. The asset plug-in

then stores this translated payload into the Persistent Store. The Persistent Store acts as a

repository for both data that are local to the asset as well as data that are made available for other

plug-ins to refine, fuse, process, or disseminate. Refine/Process plug-ins pull asset-specific or

multi-asset data from the Persistent Store and then either refine the payload (adding control tag

meta data, time, location, tagging the payload for exfiltration, etc.) or process the data in order to

add context to the raw payload (detecting an object in an image, correlating multiple lines of

bearing, classifying a target, etc.). The Dissemination component is responsible for exfiltrating

designated payloads off the controller using the communication service assigned by the current

7

mission profile. The Mission Profile component is responsible for coordinating and orchestrating

the assets to reflect the current mission. In the Terra Harvest reference implementation, Mission

Profiles are defined in JavaScript with access to the interfaces to the other plug-ins and services

within the controller.

Figure 7. Terra Harvest components.

3.1 Communications Services

Communication services implement the physical, link, network, and transport layer of the Open

System Interconnect (OSI) model. All assets connected to a controller at the physical level use

industry-defined standard electrical (serial, universal serial bus [USB], Ethernet) interfaces and

the data link software layer uses the drivers built into the operating system and the OSGi

framework. The link and network layer are specific to the communication asset and is provided

by the individual communication plug-ins. Payload framing and headers are two critical

components required in order to move payloads from a producer to a consumer. Assets that

produce payloads (i.e., sensors) must be able to package and uniquely identify their payloads

before sending the payload over a wired or wireless communication service. If an asset payload

8

size is larger than the physical link Maximum Transmission Unit (MTU) size, then the payload

must be segmented using some agreed upon packet size for that physical link. If more than one

MTU is required to pass the payload, then a segmentation protocol must be defined in order to

reconstruct the payload on the receiving end. By establishing a standard for payload

segmentation (header plus segment) that takes into account the framing of the physical link,

payloads can be segmented and identified on the sender side, transmitted over the physical

medium, and then reassembled on the receiving end thus ensuring payload delivery. Sensor to

receiver payload delivery can be provided through the use of a common segmentation library on

both the sending and receiving side of the physical link. The purpose of the segmentation library

is to break up a payload into segments, which along with the additional header information, is

smaller than the MTU of the physical link (figure 8).

Figure 8. Communication service plug-ins.

3.2 Asset Plug-ins

Assets are data producers that are attached to a controller using a wired or wireless physical link.

An asset plug-in is provided by the asset vendor and is loaded onto the controller. The primary

9

functions of an asset plug-in are to acquire asset payloads using a communication service,

perform any asset specific processing on that payload, transform the payload from asset specific

format to an internal representation based upon a standard lexicon, and persist it in the Persistent

Store. In the THOSE reference implementation of Terra Harvest, plug-ins use OSGi interfaces to

discover and connect to the desired communication service either provided by the operating

system for wired connections (i.e., USB, Ethernet) or by a communication service plug-in that

provides a wireless connection off platform. The asset plug-in also uses OSGi to establish a

connection to the Persistent Store component. A plug-in may also use OSGi services to connect

to the Resource Management component in order to receive commands on start-up and during

operation. An asset plug-in should also be able to respond to external commands that are sent to

the plug-in through the OSGi event admin interface. These commands also conform to a standard

command lexicon. The asset plug-in must process these commands and then either respond to

them locally or further process these commands by transforming them into asset-specific

workflow and payloads formats that are sent to the asset via the appropriate communication

plug-in/service.

3.3 Persistent Store

The Terra Harvest Persistent Store component is the central repository for onboard storage and

information brokering. The Persistent Store consists of two storage areas. The first area is a

general scratch storage, which can be used by onboard plug-ins for any temporary plug-in

specific storage. The other area is dedicated to temporary storage for Terra Harvest-compliant

payloads, which are defined as observations (i.e., events and sensed payload data) and command

data. Terra Harvest-compliant payloads are based upon an industry/Government developed and

evolving common lexicon. All plug-ins must conform to the common lexicon semantics that are

represented within a defined XML schema. Plug-ins can register through the Persistent Store

application programming interfaces (APIs) for events and/or sensed payloads from other assets.

Plug-ins can register for commands from other internal or external components through the

Persistent Store interface. Using the Persistent Store as the path for event processing within the

controllers enables multiple components to subscribe and respond to a single event. Event

subscription and dissemination (one to one, one to many, or broadcast) is handled by the OSGi

Event Admin service, removing this burden from the Persistent Store. Built on common APIs

and lexicon, the Persistent Store component is a prime candidate for competitive implementation

within the vendor community.

3.4 Dissemination

The Terra Harvest dissemination component is responsible for moving payloads off a controller

platform to another controller or domain-specific node. The dissemination component is

implemented as a plug-in. Whereas, the sensor asset plug-in registers with a communication

service to acquire payloads from a wired/wireless connected sensor, processes the payload,

transform the data in accordance with a common lexicon, and then persists the data in the

10

Persistent Store. The dissemination plug-in registers for events and payloads using the Persistent

Store APIs and then either sends the payload using a communication service, which will move

the payload off platform. Dissemination plug-ins can be very simple or they can contain

behaviors that are designed for specific operations. The simplest form of dissemination plug-in is

a simple pass-through. A simple pass-through dissemination plug-in registers for observations

from the Persistent Store and then simply passes these payloads directly to the communication

service for exfiltration off the platform. A simple pass-through dissemination plug-in does not

perform any additional processing on the payload nor does it reformat the payload so that it can

be efficiently sent over a bandwidth limited link. Dissemination plug-ins can be designed to have

domain-operational-specific behaviors, such as only send this type of payload out this

communication service and another type of data out this communication service. More complex

dissemination behaviors can be accomplished through the mission programming component.

3.5 Processing

Terra Harvest processing components are responsible for executing any onboard payload

processing. Processing components subscribe to the Persistent Store for observations of a certain

type or from a particular asset (e.g., if an image processing algorithm is required to perform

additional processing on images to determine if they are of adequate quality to be disseminated).

Processing plug-ins can be used to correlate multiple payloads from multiple assets (e.g.,

correlating multiple lines of bearing in order to determine object location). A processing plug-in

may produce events that are consumed by other processing plug-ins (e.g., a line of bearing

correlation event may trigger a query for imagery at a location, which, in turn, is processed

generating yet another linked observation). Processing plug-ins can produce events that, in turn,

change the controller’s behavior and/or the behavior of assets attached to the controller.

3.6 Mission Programming

The mission programming component is responsible for providing mission-specific control of

the controller and all attached assets. The mission program can consist of simply a series of

standard commands and/or domain-specific functions calls implemented within a scripting

language. Mission programs would be developed by knowledge end-users or vendors, and then

made available in an equivalent to an application store for end-users to download, configure, and

in some cases, modify for a specific mission. Mission programs will also have access to onboard

specific controller functions that enable the mission program to control power, assets, event and

observation processing, and dissemination. Mission programs can be as simple as an orderly

initialization of the controller and its assets or a complex as dynamically changing the

controller’s behavior depending on the state of events within the local and/or distributed

environment. Mission programs can operate in a hierarchical fashion in which a higher level

controller is maintaining state and dynamically changing behaviors of more than one controller

and it assets.

11

4. Conclusion

This report outlined the basic services and capabilities required for an interoperable unattended

systems controller, which would allow assets of a variety of different types and modalities and

from a variety of different vendors to communicate with one another in a plug-and-play manner.

This work could serve as a basis for further standardization for unattended systems.

12

5. References

1. Fisher, F.; Dice, E. Functional Configuration Testing for the Common Sensor Radio; ARL-

TR-5832; U.S. Army Research Laboratory: Adelphi, MD, 2011.

13

List of Symbols, Abbreviations, and Acronyms

APIs application programming interfaces

BGAN Broadband Global Area Network

DIA Defense Intelligence Agency

MTU Maximum Transmission Unit

OSGi Open Service Gateway Initiative

OSI Open System Interconnect

PED Processing, Dissemination, and Exploitation

SEIWG Security Equipment Integration Working Group

SWaP size, weight, and power

THC Terra Harvest Controller

THOSE Terra Harvest Open Source Environment

USB universal serial bus

XML extensible markup language

14

NO. OF

COPIES ORGANIZATION

 1 DEFENSE TECH INFO CTR

 (PDF) ATTN DTIC OCA (PDF)

1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 5 US ARMY RSRCH LAB

 (PDFS) ATTN RDRL CII B

 T GREGORY

 R WINKLER

 L TOKARCIK

 ATTN IMAL HRA MAIL & RECORDS MGMT

 ATTN RDRL CIO LL TECHL LIB

